Methods of Threshold Estimation (Algorithms) and New Techniques in Perimetry: A Review

Main Article Content

Aristeidis Chandrinos

Abstract

Recently, there have been several new developments in automated perimetry that have contributed to enhanced diagnosis and management of glaucoma. This paper will briefly review the classical algorithms of automated perimetry and also the latest advances in automated perimetry strategies, like SITA Faster algorithm. It will also explore the new algorithms for different perimeters and all the novel techniques, which has been shown to be a rapid, effective method of detecting glaucomatous visual field loss and have demonstrated the ability to predict the onset and progression of glaucomatous visual field deficits.

Keywords:
Perimetry, glaucoma, algorithm, threshold, testing techniques.

Article Details

How to Cite
Chandrinos, A. (2020). Methods of Threshold Estimation (Algorithms) and New Techniques in Perimetry: A Review. Asian Journal of Research and Reports in Ophthalmology, 3(3), 21-40. Retrieved from https://journalajrrop.com/index.php/AJRROP/article/view/30116
Section
Review Article

References

Walsh JT. Neuro-ophthalmology: Clinical signs and symptoms. 4th Ed. Baltimore: Williams & Wilkins; 1978.

Chauhan BC, Mohandas RN, Whelan JH, McCormick TA. Comparison of reliability indices in conventional and high-pass resolution perimetry. Ophthalmology. 1993;100(7):1089-1094.

Bengtsson B, Heijl A. SITA Fast, a new rapid perimetric threshold test. Description of methods and evaluation in patients with manifest and suspect glaucoma. Acta Ophthalmol Scand. 1998;76(4):431-437.

Olsson J, Heijl A, Bengtsson B, Routzen H. Frequency-of-seeing in computerized perimetry. In: Mills RP. [Ed.] Perimetry Update 1992/1993. Amsterdam/New York: Kugler Publications. 551-556.

Bebie H, Fankhauser F, Spahr J. Static perimetry: Accuracy and fluctuations. Acta Ophthalmol (Copenh). 1976;54(3):339-348.

Acton JH, Bartlett NS, Greenstein VC. Comparing the Nidek MP-1 and Humphrey field analyzer in normal subjects. Optom Vis Sci. 2011;88(11):1288-97.

DOI: 10.1097/ OPX 0b013e31822b3746

PMID: 21822159

Weber J, Rau S. The properties of perimetric thresholds in normal and glaucomatous eyes. Ger J Ophthalmol 1. 1992;2:79-85.

Drance MS, Anderson DR. Automatic Perimetry in glaucoma: A practical guide. New York: Grune & Stratton; 1985.

Walsh JT. Ophthalmology Monographs Vol. 3: Visual fields, examination and interpretation. New York: Oxford University Press; 2011.

Olsson J, Heijl A, Bengtsson B, Routzen H. Frequency-of-seeing in computerized perimetry: In: Mills RP, [Ed.] Perimetry Update 1992/1993. Amsterdam/New York: Kugler Publications 551-556.

Schiefer U, Pδtzold J, Dannheim F. Conventional perimetry I: Introduction--basics. Ophthalmologe. 2005;102(6):627-644.

Turpin A, McKendrick AM, Johnson CA, Vingrys AJ. Properties of perimetric threshold estimates from full threshold, ZEST and SITA-like strategies, as determined by computer simulation. Invest Ophthalmol Vis Sci. 2003;44(11):4787-4795.

Denniss J, McKendrick AM, Turpin A. Towards patient-tailored perimetry: Automated perimetry can be improved by seeding procedures with patient-specific structural information. Transl Vis Sci Technol. 2013;2(4):3.

Hudson C, Wild JM, O'Neill EC. Fatigue effects during a single session of automated static threshold perimetry. Invest Ophthalmol Vis Sci. 1994;35(1):268-280.

Gonzalez de la Rosa M, Pareja A. Influence of the "fatigue effect" on the mean deviation measurement in perimetry. Eur J Ophthalmol. 1997;7(1):29-34.

Anderson AJ, McKendrick AM. Quantifying adaptation and fatigue effects in frequency doubling perimetry. Invest Ophthalmol Vis Sci. 2007;48(2):943-948.

Madea H, Nakamura M, Negri A. New perimetric threshold test algorithm with dynamic strategy and Tendency-Oriented Perimetry (TOP) in glaucomatous eyes. Eye. 2000;14:747-751.

Weijland A, Fankhauser F, Bebie H, Flammer J. “Automated Perimetry” - Visual Field Digest 05/06 Haag-Streit AG; 2004. ISBN 3-033-00108.

Zulauf M, Fehlmann P, Flammer J. Efficiency of the standard Octopus bracketing procedure compared to that of the ‘Dynamic strategy’ of Weber. In: Mills RP and Wall M, [Ed.] Perimetry Update 1994/95. Amsterdam/ New York: Kugler Publications. 1995;422-437.

Artes PH, Iwase A, Ohno Y, Kitazawa Y, Chauhan BC. Properties of perimetric threshold estimates from full threshold, SITA standard and SITA fast strategies. Invest Ophthalmol Vis Sci. 2002;43(8): 2654-2659.

Wild JM, Pacey IE, Hancock SA, Cunliffe IA. Between-algorithm, between-individual differences in normal perimetric sensitivity: Full threshold, FASTPAC and SITA. Swedish interactive threshold algorithm. Invest Ophthalmol Vis Sci. 1999;40(6): 1152-1161.

Weber J, Klimaschka T. Test time and efficiency of the dynamic strategy in glaucoma perimetry. Ger J Ophthalmol. 1995;4:25-31.

Anderson AJ, Johnson CA. Comparison of the ASA, MOBS and ZEST threshold methods. Vision Research. 2006;46(15): 2403-2411.

Johnson CA. Psychophysical factors that have been applied to clinical perimetry. Vision Res. 2013;90:25-31.

Zulauf MP, Fehlmann, Flammer J. Perimetry with normal Octopus technique and Weber 'dynamic' technique. Initial results with reference to reproducibility of measurements in glaucoma patients. Ophthalmologe. 1996;93(4):420-427.

Wild JM. Short wavelength automated perimetry. Acta Ophthalmol Scand. 2001;79(6):546-559.

Flanagan JG, Wild JM, Trope GE. Evaluation of FASTPAC, a new strategy for threshold estimation with the Humphrey field analyzer, in a glaucomatous population. Ophthalmology. 1993;100(6): 949-954.

Glass E, Schaumberger M, Lachenmayr BJ. Simulations for FASTPAC and the standard 4-2 dB full-threshold strategy of the Humphrey field analyzer. Invest Ophthalmol Vis Sci. 1995;36(9):1847-1854.

Wall M. What's new in perimetry. J Neuroophthalmol. 2004;24(1):46-55.

Barkana YE, Bakshi Y, Goldich Y, Morad A, Kaplan I, Avni, Zadok D. Characterization and comparison of the 10-2 SITA-standard and fast algorithms. Scientific World Journal. 2012;821802.

Johnson CA. Modern developments in clinical perimetry. Curr Opin Ophthalmol. 1993;4(2):7-13.

Bengtsson B, Heijl A. Diagnostic sensitivity of fast blue-yellow and standard automated perimetry in early glaucoma: A comparison between different test programs. Ophthalmology. 2006;113(7):1092-1097.

Punjabi OS, Lin SC, Stampe RL. Advances in mapping the glaucomatous visual field: from confrontation to multifocal visual evoked potentials. The Internet Journal of Ophthalmology and Visual Science. 2006;4(1).

Anderson DR, Patella VM. Automated static perimetry. Washington: CV Mosby; 1999.

Ng M, Racette L, Pascual JP, Liebmann JM, Girkin CA, Lovell SL, et al. Comparing the full-threshold and Swedish interactive thresholding algorithms for short-wavelength automated perimetry. Invest Ophthalmol Vis Sci. 2009;50(4):1726-33.

Johnson CA, Wall M, Thompson HS. A history of perimetry and visual field testing. Optom Vis Sci. 2011;88(1):E8-15.

Budenz DL, Rhee P, Feuer WJ, McSoley J, Johnson CA, Anderson DR. Comparison of glaucomatous visual field defects using standard full threshold and Swedish interactive threshold algorithms. Archives of Ophthalmology. 2002;120(9):1136–1141.

Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency-doubling perimetry. Invest Ophthalmol Vis Sci. 1997;38(2):413-425.

Heijl A, Patella VM, Chong LX, et al. A new SITA perimetric threshold testing algorithm: Construction and a multicenter clinical study. Am J Ophthalmol. 2019;198: 154-165.

Henson DB, Emuh T. Monitoring vigilance during perimetry by using pupillography. Invest Ophthalmol Vis Sci. 2010;51(7): 3540-3543.

Scherrer M, Fleischhauer JC, Helbig H, Johann Auf der Heide K, Sutter FK. Comparison of tendency-oriented perimetry and dynamic strategy in octopus perimetry as a screening tool in a clinical setting: A prospective study. Klin Monbl Augenheilkd. 2007;224(4):252-254.

Morales J, Weitzman ML, Gonzαlez de la Rosa M. Comparison between Tendency-Oriented Perimetry (TOP) and octopus threshold perimetry. Ophthalmology. 2000;107(1):134-142.

Anderson AJ. Spatial resolution of the tendency-oriented perimetry algorithm. Invest Ophthalmol Vis Sci. 2003;44(5): 1962-1968.

Schiefer U, Pascual JP, Edmunds B, Feudner E, Hoffmann EM, Johnson CA, et al. Comparison of the new perimetric GATE strategy with conventional fullthreshold and SITA standard strategies. Invest Ophthalmol Vis Sci. 2009;50(1): 488-494.

Wabbels BK, Diehm S, Kolling G. Continuous light increment perimetry compared to full threshold strategy in glaucoma. Eur J Ophthalmol. 2005;15(6): 722-729.

Capris P, Autuori S, Capris E, Papadia M. Evaluation of threshold estimation and learning effect of two perimetric strategies, SITA Fast and CLIP, in damaged visual fields. Eur J Ophthalmol. 2008;18(2):182-190.

Wabbels BK, Wilscher S. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy. Acta Ophthalmol Scand. 2005;83(6):664-669.

Gonzalez de la Rosa M, Gonzalez-Hernandez M, Sanchez-Garcia M, Rodriguez de la Vega R, Diaz-Aleman T, Pareja Rios A. Oculus-Spark perimetry compared with 3 procedures of glaucoma morphologic analysis (GDx, HRT and OCT). Eur J Ophthalmol. 2013;23(3):316-323.

Harwerth RS, Carter-Dawson L, Smith EL, Barnes G, Holt WF, Crawford MLJ. Neural losses correlated with visual losses in clinical perimetry. Investigative Ophthalmology and Visual Science. 2004;45:3152-3160.

Malik R, Swanson WH, Garway-Heath DF. Structure-function relationship' in glaucoma: Past thinking and current concepts. Clin Exp Ophthalmol. 2012;40(4):369-380.

Medeiros FA, Lisboa R, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. A combined index of structure and function for staging glaucomatous damage. Arch Ophthalmol. 2012;130(9):1107-1116.

Medeiros FA, Zangwill LM, Bowd C, Mansouri K, Weinreb RN. The structure and function relationship in glaucoma: Implications for detection of progression and measurement of rates of change. Invest Ophthalmol Vis Sci. 2012;53(11): 6939-6946.

Wang Y, Xu K, Zhang H, Zhao J, Zhu X, Wang Y, Wu R. Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: A brief literature review presenting a novel hypothesis in glaucoma pathology. Molecular Medicine Reports. 2014;10: 1179-1183.

Havvas I, Papaconstantinou D, Moschos MM, Theodossiadis PG, Andreanos V, Ekatomatis P, Vergados I, Andreanos D. Comparison of SWAP and SAP on the point of glaucoma conversion. Clin Ophthalmol. 2013;7:1805-1810.

McBride J, Rowe FJ. Review of the use of SWAP and FDT for the early detection of visual field loss. Ophthalmology Research: An International Journal. 2014;78-95.

Heijl A, Bengtsson B, Patella A. Effective perimetry. Zeiss Visual Field Primer, 4th Edition; 2012.

Francis BA, Singh K, Lin SC, Hodapp E, Jampel HD, Samples JR, Smith SD. Novel glaucoma procedures: A report by the American Academy of Ophthalmology. Ophthalmology. 2011;118(7):1466-1480.

Blumenthal EZ, Sample PA, Berry CC, Lee AC, Girkin CA, Zangwill L, Caprioli J, Weinreb RN. Evaluating several sources of variability for standard and SWAP visual fields in glaucoma patients, suspects and normals. Ophthalmology. 2003;110(10): 1895-1902.

Alencar LM, Medeiros FA. The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up. Indian J Ophthalmol. 2011;59(Suppl):S53-58.

Chandrinos A. Aspects of perimetric learning index. PhD Thesis, Cardiff University, Wales, UK; 2017.

Acton JH, Gibson JM, Cubbidge RP. Quantification of visual field loss in agerelated macular degeneration. PLoS One. 2012;7(6):e39944.

Frisιn L. High-pass resolution perimetry. A clinical review. Doc Ophthalmol. 1993;83(1):1-25.

Frisen L, Nikolajeff F. Properties of high-pass resolution perimetry targets. Acta Ophthalmol (Copenh). 1993;71(3):320-326.

Ennis FA, Johnson CA. Are high-pass resolution perimetry thresholds sampling limited or optically limited? Optom Vis Sci. 2002;79(8):506-511.

Artes PH, Chauhan BC. Longitudinal changes in the visual field and optic disc in glaucoma. Prog Retin Eye Res. 2005;24(3):333-354.

Kalaboukhova L, Fridhammar V, Lindblom B. Glaucoma follow-up by the Heidelberg retina tomograph--new graphical analysis of optic disc topography changes. Graefes Arch Clin Exp Ophthalmol. 2006;244(6): 654-662.

Martin LM, Nilsson AL. Rarebit perimetry and optic disk topography in pediatric glaucoma. J Pediatr Ophthalmol Strabismus. 2007;44(4):223-231.

Frisen L, Jensen C. How robust is the optic chiasm? Perimetric and neuro-imaging correlations. Acta Neurol Scand. 2008; 117(3):198-204.

Sabel BA, Henrich-Noack P, Fedorov A, Gall C. Vision restoration after brain and retina damage: The "residual vision activation theory". Prog Brain Res. 2011;192:199-262.

Hackett DA, Anderson AJ. Determining mechanisms of visual loss in glaucoma using Rarebit perimetry. Optom Vis Sci. 2011;88(1):48-55.

Salvetat ML, Zeppieri M, Parisi L, Brusini P. Rarebit perimetry in normal subjects: Test-retest variability, learning effect, normative range, influence of optical defocus and cataract extraction. Invest Ophthalmol Vis Sci. 2007;48(11):5320-5331.

Nilsson MO, Abdiu CG, Laurell, Martin L. Rarebit perimetry and fovea test before and after cataract surgery. Acta Ophthalmol. 2010;88(4):479-482.

Vislisel JM, Doyle CK, Johnson CA, Wall M. Variability of rarebit and standard perimetry sizes I and III in normals. Optom Vis Sci. 2011;88(5):635-639.

Frisen L. Rapid assessment of neurovisual integrity using multiple rarebits. Ophthalmology. 2013;120(9):1756-1760.

Anderson AJ, Johnson CA, Fingeret M, Keltner JL, Spry PG, Wall M, Werner JS. Characteristics of the normative database for the Humphrey matrix perimeter. Invest Ophthalmol Vis Sci. 2005;6(4):1540- 1548.

Artes PH, Hutchison DM, Nicolela MT, LeBlanc RP, Chauhan BC. Threshold and variability properties of matrix frequency-doubling technology and standard automated perimetry in glaucoma. Invest Ophthalmol Vis Sci. 2005;6(7):2451-2457.

Johnson C. Chapter 9: Detecting functional changes in the Patient’s vision: Visual field analysis. Clinical Glaucoma Care Ed. Samples J & Schacknow P, Springer; 2008. SBN-978-1-4614-4171-7.

Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Progress in Retinal and Eye Research. 2007;26:688-710.

Anderson AJ, Johnson CA. Mechanisms isolated by frequency-doubling technology perimetry. Invest Ophthalmol Vis Sci. 2002;43:388-401.

Zeppieri M, Demirel S, Kent K, Johnson CA. Perceived spatial frequency of sinusoidal gratings. Optom Vis Sci. 2008;85(5):318-329.

Casson EJ, James B, Rubinstein A, Haggai A. Clinical comparison of frequency doubling technology perimetry and Humphrey perimetry. Br J Ophthalmol. 2000;85:360–362.

Horn FK, Scharch V, Mardin CY, Lämmer R, Kremers J. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016;254(5):937-46.

Cello KE, Nelson-Quigg JM, Johnson CA. Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol. 2000;129(3):314-322.

Iester M, Perdicchi A, Capris E, Siniscalco A, Calabria, Recupero SM. Comparison between discriminant analysis models and ‘Glaucoma Probability Score’ for the detection of glaucomatous optic nerve head changes. J Glaucoma. 2008;17:535-540.

Spry PG, Johnson CA, SL M, Cioffi GA. Psychophysical investigation of ganglion cell loss in early glaucoma. J Glaucoma. 2005;14:11-19.

Brusini P, Salvetat ML, Parisi L, Zeppieri M. Probing glaucoma visual damage by rarebit perimetry. Br J Ophthalmol. 2005;89:180-184.

DOI: 10.1136/bjo

Hong S, Na K, Kim CY, Seong GJ. Learning effect of Humphrey matrix perimetry. Can J Ophthalmol. 2007;42: 707-711.

Racette L, Tafreshi A, Liebmann JM, Girkin CA, Lalezary M, Zangwill LM, Weinreb RN, Sample PA. Visual function specific perimetry to identify glaucomatous visual loss using three different definitions of visual field abnormality. Investigative Ophthalmology & Visual Science. 2008;49: 1157.

Redmond T, O'Leary N, Hutchison DM, Nicolela MT, Artes PH, Chauhan BC. Visual field progression with frequency-doubling matrix perimetry and standard automated perimetry in patients with glaucoma and in healthy controls. JAMA Ophthalmol. 2013;131(12):1565-72.

Burgansky-Eliash Z, Wollstein G, Patel A, Bilonick RA, Ishikawa H, Kagemann L, et al. Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol. 2007;91(7):933-938.

Wang X, Xu K, Zhang H, Zhao J, Zhu X, Wang Y, Wu R. Retinal ganglion cell death is triggered by paraptosis via reactive oxygen species production: A brief literature review presenting a novel hypothesis in glaucoma pathology. Molecular Medicine Reports. 2014;10: 1179-1183.

Lamparter J, Russel RA, Schulze A, Schuff AC, Pfeiffer N, Hoffmann E. Structure-function relationship between FDF, FDT, SAP and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci. 2012;53(12):7553-9.

Horn FK, Scharch V, Mardin CY, et al. Comparison of frequency doubling and flicker defined form perimetry in early glaucoma. Graefes Arch Clin Exp Ophthalmol. 2016;254:937–946.

Perez CA, Ferreras A, Le Pablo, Pajarin AB, Polo V. Relationship between the automated classification of Heidelberg retina tomograph and main indices of short-wavelength automated perimetry. Acta Ophthalmologica. 2010;87.

Perez CA, Gil-Arribas L, Ferreras A, Otin S, Altemir I, Fernadez S, Julvez IP, Fuertes I. Relationship between flicker FDF perimetry and standard automated perimetry. Acta Ophthalmologica. 2010;88.

Lamparter J, Schulze A, Schuff AC, Pfeiffer N, Hoffmann EN. Learning curve of flicker defined form perimetry. Investigative Ophthalmology & Visual Science. 2010;51.

Gonzalez-Hernandez M, Garcia-Feijoo J, Sanchez Mendez M, Gonzalez de la Rosa M. Combined spatial, contrast and temporal functions perimetry in mild glaucoma and ocular hypertension. Eur J Ophthalmol. 2004;14:514–522.

Gonzalez de la Rosa G, Hernandez G, Estevez A, Aleman D, Plasencia A. Diagnostic capability of pulsar, FDT and HRT-II in glaucoma suspects. Arch Soc Esp Oftalmol. 2007;82:413-422.

Gonzalez de la Rosa M, Gonzalez-Hernandez M, Garcia-Feijoo J, et al. Comparacion del rango de medida de defectos entre la perimetria estandar blanco/blanco y la perimetria Pulsar. Arch Soc Esp Oftalmol. 2011;86:113–117.

Gonzalez de la Rosa M, Gonzalez-Hernandez M, Diaz-Aleman T. Linear regression analysis of the cumulative defect curve by sectors and other criteria of glaucomatous visual field progression. Eur J Ophthalmol. 2009;19:416–424.

Eisen-Enosh A, Farah N, Burgansky-Eliash Z, et al. Evaluation of critical flicker-fusion frequency measurement methods for the investigation of visual temporal resolution. Sci Rep. 2017;7:15621.

Hirasawa K, Shoji N, Kasahara M, et al. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients. Sci Rep. 2016;6: 25563.

Bernardi Luciana, Costa P. Vital and ineu Oto Shi Flicker perimetry in healthy subjects: Influence of age and gender, learning effect and short-term fluctuation. Arq Bras Oftalmol. 2007;70(1):91-9.

Roberti G, Manni G, Riva I, et al. Detection of central visual field defects in early glaucomatous eyes: Comparison of humphrey and octopus perimetry. PLoS One. 2017;12(10):e0186793.

Stavrou EP, Wood JM. Central visual field changes using flicker perimetry in type 2 diabetes mellitus. Acta Ophthalmologica Scandinavica. 2005;83:574-580.

Phipps JA, Dang TM, Vingrys AJ, Guymer RH. Flicker perimetry losses in age-related macular degeneration. Investigative Ophthalmology and Visual Science. 2004;45:3355-3360.

Matsumoto C, Takada S, Okuyama S, Arimura E, Hashimoto S, Shimomura Y. Automated flicker perimetry in glaucoma using Octopus 311: A comparative study with the Humphrey matrix. Acta Ophthalmologica Scandinavica. 2006;84: 210-215.

Turpin A, Artes PH, McKendrick AM. The open perimetry interface: An enabling tool for clinical visual psychophysics. Journal of Vision. 2012;12:22.

Oleszczuk JD, Bergin C, Sharkawi E. Comparative resilience of clinical perimetric tests to induced levels of intraocular straylight. Investigative Ophthalmology and Visual Science. 2012;53:1219-1224.

Bergin C, Redmond T, Nathwani N, Verdon-Roe GM, Crabb DP, Anderson RS, Garway-Heath DF. The effect of induced intraocular straylight on perimetric tests. Invest Ophthalmol Vis Sci. 2011;52(6): 3676-3682.

Wen JC, Lee CS, Keane PA, Xiao S, Rokem AS, Chen PP, et al. Forecasting future Humphrey visual fields using deep learning. PLoS ONE. 2019.;14(4): e0214875.

Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103:167–175.

Jammal AA, Thompson AC, Mariottoni EB, et al. Human versus machine: Deep learning algorithm to human gratings for detecting glaucoma in fundus. Photo-graphs Ophthalmol. 2020;211:123–131.